Lysine acetyltransferase NuA4 and acetyl-CoA regulate glucose-deprived stress granule formation in Saccharomyces cerevisiae

نویسندگان

  • Meaghen Rollins
  • Sylvain Huard
  • Alan Morettin
  • Jennifer Takuski
  • Trang Thuy Pham
  • Morgan D Fullerton
  • Jocelyn Côté
  • Kristin Baetz
چکیده

Eukaryotic cells form stress granules under a variety of stresses, however the signaling pathways regulating their formation remain largely unknown. We have determined that the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 is required for stress granule formation upon glucose deprivation but not heat stress. Further, the Tip60 complex, the human homolog of the NuA4 complex, is required for stress granule formation in cancer cell lines. Surprisingly, the impact of NuA4 on glucose-deprived stress granule formation is partially mediated through regulation of acetyl-CoA levels, which are elevated in NuA4 mutants. While elevated acetyl-CoA levels suppress the formation of glucose-deprived stress granules, decreased acetyl-CoA levels enhance stress granule formation upon glucose deprivation. Further our work suggests that NuA4 regulates acetyl-CoA levels through the Acetyl-CoA carboxylase Acc1. Altogether this work establishes both NuA4 and the metabolite acetyl-CoA as critical signaling pathways regulating the formation of glucose-deprived stress granules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic-site mutations in the MYST family histone Acetyltransferase Esa1.

Esa1 is the only essential histone acetyltransferase (HAT) in budding yeast. It is the catalytic subunit of at least two multiprotein complexes, NuA4 and Piccolo NuA4 (picNuA4), and its essential function is believed to be its catalytic HAT activity. To examine the role of Esa1 in DNA damage repair, we isolated viable esa1 mutants with a range of hypersensitivities to the toposide camptothecin....

متن کامل

Regulation of Septin Dynamics by the Saccharomyces cerevisiae Lysine Acetyltransferase NuA4

In the budding yeast Saccharomyces cerevisiae, the lysine acetyltransferase NuA4 has been linked to a host of cellular processes through the acetylation of histone and non-histone targets. To discover proteins regulated by NuA4-dependent acetylation, we performed genome-wide synthetic dosage lethal screens to identify genes whose overexpression is toxic to non-essential NuA4 deletion mutants. T...

متن کامل

Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae

Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation accumulated in growth-arrested cells in a manner that depended on acetyl-CoA generation in distinct...

متن کامل

NuA4 Lysine Acetyltransferase Complex Contributes to Phospholipid Homeostasis in Saccharomyces cerevisiae

Actively proliferating cells constantly monitor and readjust their metabolic pathways to ensure the replenishment of phospholipids necessary for membrane biogenesis and intracellular trafficking. In Saccharomyces cerevisiae, multiple studies have suggested that the lysine acetyltransferase complex NuA4 plays a role in phospholipid homeostasis. For one, NuA4 mutants induce the expression of the ...

متن کامل

Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.

Saccharomyces cerevisiae is an important industrial cell factory and an attractive experimental model for evaluating novel metabolic engineering strategies. Many current and potential products of this yeast require acetyl coenzyme A (acetyl-CoA) as a precursor and pathways towards these products are generally expressed in its cytosol. The native S. cerevisiae pathway for production of cytosolic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017